Home | english  | Impressum | Datenschutz | Sitemap | KIT

Artificial Intelligence in Service Systems

Artificial Intelligence in Service Systems
Typ: Vorlesung (V)
Semester: WS 18/19
Zeit: 17.10.2018
09:45 - 11:15 wöchentlich
20.30 SR 0.014
20.30 Kollegiengebäude Mathematik, Englerstr. 2


24.10.2018
09:45 - 11:15 wöchentlich
20.30 SR 0.014
20.30 Kollegiengebäude Mathematik, Englerstr. 2

31.10.2018
09:45 - 11:15 wöchentlich
20.30 SR 0.014
20.30 Kollegiengebäude Mathematik, Englerstr. 2

07.11.2018
09:45 - 11:15 wöchentlich
20.30 SR 0.014
20.30 Kollegiengebäude Mathematik, Englerstr. 2

14.11.2018
09:45 - 11:15 wöchentlich
20.30 SR 0.014
20.30 Kollegiengebäude Mathematik, Englerstr. 2

21.11.2018
09:45 - 11:15 wöchentlich
20.30 SR 0.014
20.30 Kollegiengebäude Mathematik, Englerstr. 2

28.11.2018
09:45 - 11:15 wöchentlich
20.30 SR 0.014
20.30 Kollegiengebäude Mathematik, Englerstr. 2

05.12.2018
09:45 - 11:15 wöchentlich
20.30 SR 0.014
20.30 Kollegiengebäude Mathematik, Englerstr. 2

12.12.2018
09:45 - 11:15 wöchentlich
20.30 SR 0.014
20.30 Kollegiengebäude Mathematik, Englerstr. 2

19.12.2018
09:45 - 11:15 wöchentlich
20.30 SR 0.014
20.30 Kollegiengebäude Mathematik, Englerstr. 2

09.01.2019
09:45 - 11:15 wöchentlich
20.30 SR 0.014
20.30 Kollegiengebäude Mathematik, Englerstr. 2

16.01.2019
09:45 - 11:15 wöchentlich
20.30 SR 0.014
20.30 Kollegiengebäude Mathematik, Englerstr. 2

23.01.2019
09:45 - 11:15 wöchentlich
20.30 SR 0.014
20.30 Kollegiengebäude Mathematik, Englerstr. 2

30.01.2019
09:45 - 11:15 wöchentlich
20.30 SR 0.014
20.30 Kollegiengebäude Mathematik, Englerstr. 2

06.02.2019
09:45 - 11:15 wöchentlich
20.30 SR 0.014
20.30 Kollegiengebäude Mathematik, Englerstr. 2


Dozent: Dr.-Ing. Niklas Kühl
SWS: 2
LVNr.: 2595650

Course Content

Artificial Intelligence and the application of machine learning is becoming more and more popular to solve relevant business challenges. However, it is not only important to be familiar with precise algorithms, but rather a general understanding of the necessary steps with a holistic view—from real-world challenge to successful deployment of an AI. As part of this course, we teach the complete lifecycle of an AI project with a focus on supervised machine learning challenges. We do so by also teaching the use of Python and the required packages like scikit-learn and tensorflow with exemplary data. We then take this knowledge to the more complex case of service systems with different entities (e.g. companies) who interact with each other and show possibilities on how to derive holistic insights. Two possibilities to do so are the use of meta and transfer machine learning, where we teach insights in their theory, design and application.

Aim

Students of this course will be able to understand and implement the complete lifecycle of a typical Artificial Intelligence use case with supervised machine learning. Furthermore, they understand the importance and the means of applying AI and Machine Learning within service systems, which allows multiple, independent entities to collaborate and derive insights. Students will be proficient with typical Python code for AI challenges.

Prelimenary Outline:

  • Motivation, Terminology, Overview
  • Learning Lifecycle: Initiation
  • Learning Lifecycle: Performance estimation & evaluation
  • Learning Lifecycle: Deployment
  • Learning Lifecycle: Concept drift
  • Learning in Service Systems: Meta Learning
  • Learning in Service Systems: Transfer Learning
  • Creative AI Services
  • Ethics of AI